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Abstract—Researchers conducting studies on programming
tools often make use of maintenance tasks. The complexity of
these tasks can significantly influence how participants behave.
At the same time, the complexity of tasks is difficult to pinpoint
due to the many sources of complexity for maintenance tasks.
As a result, researchers may struggle to deliberately decide in
which regard their tasks should be complex and in which regard
they should be simple.

To help researchers deliberately influence task complexity, we
discuss different factors of task complexity. We draw these factors
from 23 selected and 39 surveyed studies on programming tools.
We arrange the factors according to a task complexity model
from ergonomics research that we adapt for maintenance tasks.
We illustrate the application of the factors through an example
critique of a task design. In the end, task complexity might always
be too complex to be fully controlled. Nevertheless, we hope
that our discussion helps other researchers to decide in which
dimensions their tasks are complex and in which dimensions they
want to keep them simple.

Index Terms—task complexity, empirical studies, programming
tools, software development tools, survey

I. INTRODUCTION

Researchers working on programming tools empirically
study programmers through experiments or user studies [1].
A typical setup of such studies revolves around maintenance
tasks that “take the form of an addition, removal or debug
task carried out on a piece of code” [2]-[4]. In these setups,
researchers face the challenge that the complexity of the
maintenance tasks can influence the behavior of programmers.
In this paper, we aim to provide guidance to researchers on
how to analyze and, to some degree, shape the complexity of
tasks.

Tasks are a central component of study setups. Correspond-
ingly, their selection and design are prominently discussed in
papers that describe strategies to design studies on program-
ming tools [1], [3], [4]. Generally, the tasks are often the main
stimulus for participants, next to the tool under investigation.
The characteristics of the tasks may influence the behavior of
programmers with regard to, for example, their overall com-
prehension strategy, whether they use concrete or symbolic
mental simulation, or whether they debug opportunistically or
systematically [5]-[7]. As a result, the tasks may determine
the explanatory power of an experiment or the usefulness of
observations in user studies and their interpretation [3, p. 112].

Tasks have multiple characteristics that influence program-
mer behavior. One such characteristic is task complexity. Task

complexity can have a profound impact on programming and
comprehension strategies employed by programmers [5], [6].
For example, programmers may employ different debugging
strategies when working on a small method in comparison
to working on a large system [7]. The problem with task
complexity is that it is composed of several factors. For
example, while the complexity of a task often depends on
the size of the source code, the complexity might also result
from other characteristics such as the kind of defect to be
fixed, the quality of the source code, or the presence or
absence of additional documentation. Thus, a task can be
complex in some regard and simple in others. This variety of
characteristics makes it difficult for researchers to consciously
and comprehensively decide for which of these characteristics
their task should be simple or complex.

With this paper, we want to support researchers investigating
programming tools by enabling them to analyze and shape the
complexity of maintenance tasks so that those are appropriate
for their research questionsl. Therefore, we describe a col-
lection of factors that contribute to task complexity, derived
from 62 publications sourced from an existing corpus on
program comprehension studies, additionally selected studies,
and our own experience with similar studies. The contribution
of this collection is not a complete theory of the complexity
of maintenance tasks, but a practical reference for researchers
designing studies in the absence of such a theory. To support
researchers in finding task complexity factors relevant to their
study, we arrange the factors according to task artifacts [8].
To make the collection useful to studies with varied theoretical
underpinnings, we avoid prescribing too many theoretical con-
structs on program maintenance and thus structured the col-
lection along the task artifacts. To further support researchers
in selecting task complexity factors, we also associated the
factors with task complexity dimensions from a comprehensive
and generic framework of task complexity used in ergonomics
research [9]. To keep our collection focused, we limited our
scope to studies with trained programmers. Within this scope,
our collection can be used to analyze purposefully designed
tasks as well as tasks retrieved from existing projects.

The more general topic of setting up studies on software
development is covered by numerous related guides and stud-

IParts of Sections I and II are based on a publication of preliminary results
with the Programming Experience Workshop 2022 (PX/22) [8].
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ies [1], [3], [10], [11]. Some of these guides also cover task
characteristics to some degree. In contrast to these works, we
focus exclusively on the design of tasks and discuss them in
detail.

In the following, we define task complexity, contrast it
to task difficulty, illustrate the role of maintenance tasks
in studies on programming tools, describe our methodology,
and briefly introduce the task complexity framework used
(Section II and Section III). We then present our collection
of task complexity factors (Section IV). To illustrate how
researchers may apply our guide, we critique an example task
from a study on programming tools (see Section V).

II. MAINTENANCE TASK COMPLEXITY IN STUDIES

Maintenance tasks are used in a variety of studies on
programming tools. In this paper, we focus on perfective and
corrective tasks. To lay the foundation for the subsequent
analysis, we define task complexity and contrast it to task
difficulty. While task complexity is seldom used and defined
in programming tools studies, we show examples of studies
that already discuss some characteristics that contribute to task
complexity. Finally, we briefly point out how researchers in
other fields tackle task complexity.

A. Studies based on Maintenance Tasks

Software maintenance tasks are tasks in which participants
are presented with an existing program or system and some
form of description of a desired change or outcome. Such
tasks are used in various kinds of studies, from controlled
experiments to observational studies with flexible setups [1]-
[3], [12], [13]. There are typically two forms of maintenance
tasks: perfective and corrective [14]. In both kinds of main-
tenance tasks, participants receive a program or system and
some description of the desired change. Maintenance tasks are
used by researchers evaluating existing or new tools as well
as by researchers developing cognitive models or theories of
programming activities [13], [15], [16].

In perfective maintenance tasks participants are asked to
adapt existing features or add new features according to
some description of the new behavior [14]. For example, in
an evaluation study for an Android programming tool, the
task was to add a database import to an existing Android
app [17]. An observational study on how programmers gather
information on their programs, asked participants to implement
five features in a small painting application [13].

In corrective maintenance tasks, participants are asked to
repair defective behavior [14]. Corrective tasks are often used
to evaluate debugging tools and strategies. For example, an
experiment using corrective tasks explored whether the live
feedback in spreadsheets helps programmers during debug-
ging [12], [18]. Participants received two small, synthesized
spreadsheets in two different domains and were asked to repair
as many defects as possible within 15 minutes. An experiment
evaluating the Whyline tool asked participants to repair two
real defects in a large project [19].

B. Defining Task Complexity

In subsequent sections, we will explore how researchers
currently deal with the complexity of their tasks and how task
complexity can influence programmer behavior. In preparation,
we first define the term task complexity.

The definition we use defines task complexity as: “the ag-
gregation of any intrinsic task characteristic that influences the
performance of a task™ [9]. Hence, we regard task complexity
as a compound concept that subsumes other characteristics of
tasks [9]. The criteria that the characteristics have to influence
the task performance are explained as: “If a task characteristic
imposes specific resource requirements (e.g., cognitive and
physical demands, required knowledge and skills) on task
performers, it is considered to influence the performance of the
task” [9]. Correspondingly, task complexity describes charac-
teristics of the task that may influence generic performers.

Task difficulty is related to task complexity. However, in
contrast to task complexity, task difficulty depends on indi-
vidual task performers. For this work, we use the definition
that task difficulty is the effort task performers perceive when
working on a task [9]. Thus, task difficulty results from the
combination of task complexity and the personal resources of
performers. Examples of such personal resources in the context
of programming tools are how experienced task performers
are in programming and how much they know about the
application domain [20], [21]. Researchers often use task
difficulty to describe their tasks [1], [3] and commonly assess
or shape task difficulty through expert judgment or piloting.

In summary, task complexity and task difficulty are both
relevant to study designs. While task complexity is relevant to
the actual research questions, task difficulty is also a practical
concern for study designs, as it determines, for example,
how much time participants will spend on a task. Matching
task complexity and participants is a common challenge, in
which analyzing task complexity can help determine sources
of complexity that may become difficult for participants.

C. Task Characteristics in Studies using Maintenance Tasks

The tasks used in studies are a major influence on par-
ticipants. As they determine how useful and generalizable
observations are, researchers discuss their tasks in detail via
a variety of characteristics. An example of such a description
is an evaluation study of a new user interface metaphor for
IDEs [22, p.2509]. The description covered, among other
aspects, the overall system size in several metrics such as
lines of code and number of classes, the size of the affected
features, and the kinds of defects. Further, the researchers also
controlled some characteristics, such as the technical knowl-
edge required and the presence of documentation. Similarly, an
evaluation study of test-based fault navigation tools describes
detailed characteristics of debug tasks [23, p.92]: the length
of the infection chain, the presence of tests, and whether the
defects are wrong or missing code.

These studies already describe several characteristics that
contribute to task complexity. Nevertheless, as there is no
structured guidance on task complexity, potentially relevant



characteristics are often missing. An example of a task de-
scription that might benefit from a more thorough discussion
of the tasks is a user study on an Android prototyping
framework [17, p.102]. This study outlines the application
domain of the app to be adapted and a brief description of the
feature to be implemented.? To fully understand the subsequent
observations, readers may also benefit from a description of
the size of the original system and an ideal patch implementing
the new feature. Readers may also benefit from the description
of characteristics that are seemingly unrelated to a perfective
maintenance task but still contribute to the task complexity,
such as how much of the system participants needed to
understand to implement the feature, and how many steps were
required to evaluate whether the implemented functionality
met the specification.

D. Task Complexity in other Research Areas

Task complexity is a common concept used to character-
ize tasks in a variety of research areas. A model of task
complexity with broad applicability is the model of hierar-
chical complexity [24]. The model uses information theory
to define the complexity of tasks either horizontally [24,
p-250] or vertically [24, p.251]. While this model is quite
generic, it also only describes the information theoretical
nature of task complexity, without references to the actual
characteristics of tasks. In IR research, task complexity is
used to characterize search tasks [25]. Researchers studying
IR use task complexity in studies to evaluate search systems
or observe usage patterns to inform theories of information
retrieval. In industrial ergonomics research, task complexity
is used to assess processes, such as continuous monitoring
of a nuclear power plant [9], [26], [27]. Researchers use
task complexity to analyze the structure of the processes and
determine complexity factors that may be reduced.

E. Related Guides on Tasks in Experiment Designs

Numerous guides, models, and literature studies discuss the
general topic of setting up studies on software development.
A recently published guide on experiments on code compre-
hension also describes characteristics of the tasks and the code
participants work on [3]. Another guide on the general process
of evaluating software engineering tools through experiments
discusses practical considerations of task sourcing and tim-
ing [1]. A study on the state of experimentation in software
engineering research describes the spectrum of kinds of tasks
that are used in experiments and relates them with the sizes
of the tasks [4]. Similarly, a survey of code readability studies
outlines the characteristics used throughout studies and also
describes the evaluation methods used and how they relate
to learning activities [28]. Finally, a study on confounding
variables in research on program comprehension finds and
discusses several task complexity properties [11].

2This observation only refers to the list of task characteristics given in the
paper, which might be brief due to a page limitation. The authors may very
well have considered other task characteristics when selecting the tasks.

Beyond general guides, there is also a related model that
aims to quantify task complexity of maintenance tasks in
general, based on a model from psychology [29], [30]. At
the fundamental level, the model uses changes to source code
and information cues that are required to perform the changes.
Based on these primitive elements, the model distinguishes
between component complexity (number of changes and the
information required for each), coordinate complexity (based
on the relations between changes, for example, pre-requisites
or timing), and dynamic complexity (changes during the task
that influence the relations between changes).

III. COLLECTION STRUCTURE AND METHODOLOGY

Our collection comprises task complexity factors and con-
siderations from 62 papers. To make the collection accessible,
we grouped factors according to the variation points of tasks
that researchers can influence, such as the task description,
the system, or the patch to be created. To support researchers
further in shaping the task complexity for their respective
research questions, we also grouped the factors according to
general dimensions of task complexity.

A. Variation Points for Maintenance Tasks in Studies

To identify sources of complexity in program maintenance
tasks, we considered models that describe general activities of
maintenance tasks [31]-[33] [34, p. 191]. Speaking in general
terms, these models postulate that programmers would begin
with an initial comprehension phase, where materials such as a
feature description, an observed fault, or similar are analyzed.
Next, programmers would move on to identify the code in the
software system that is relevant for implementing the feature
or repairing the fault. In the case of corrective maintenance,
the programmers repeatedly formulate and test hypotheses,
for example using their existing knowledge of the software
system or entry points derived from the comprehension phase,
trying to reproduce and understand the concern. In the case
of perfective maintenance tasks, they will work to understand
the context of the feature to be implemented and the potential
impact changes might have on other system parts [33]. Finally,
the programmers create a patch that should eventually yield
the improved program.

Drawing from these activities, we extracted distinct varia-
tion points that researchers can affect in their study setup: the
task description, the software system, the infection chain’or
feature location, the patch participants are expected to create,
and the ool environment.

B. Integrating General Complexity Contributing Factors

We want to support researchers in determining which factors
might be relevant to their research question. To support them
in fine-grained decisions, we not only classify the collec-
tion of factors based on variation points but also based on
general sources of task complexity. We draw these general

3The infection chain refers to the steps between the instruction (defect) that
creates an erroneous run-time state (infection) and the instruction that leads
to the wrong surface behavior of the program (failure) [7], [23].



sources from a generic framework of task complexity that
is supposed to provide a generic perspective on task com-
plexity independent of particular domains [9]. This generic
framework is the result of a review of 24 previous models
of task complexity. It provides a set of five components
affecting task complexity: goal and output, input, process,
time, and presentation. For each component, the framework
defines complexity-contributing factors (CCFs), which are
concrete factors that increase or decrease the complexity of
its component.

The first component describes goal and output factors; its
CCFs affect the abstract goal of the task through characteristics
such as clarity, quantity, or redundancy of the goal. Second,
the input factors describe the materials and stimuli given to
participants, for example, their rate of change, quantity, or
conflict. Third, the process component includes factors such
as the required quantity of actions, repetitiveness, or cognitive
requirements of the process. Fourth, the fime component
comprises the factors of concurrency and time pressure of the
task. Finally, the authors of the framework chose to consider
presentation as a separate component, noting that it may also
be considered part of the input component.

For each variation point, we classified the factors we iden-
tified according to these CCFs. With the CCFs, researchers
can take more fine-grained decisions. For example, researchers
investigating a tool for keeping track of design decisions may
want the task to be complex due to the size of the patch
(patch: output quantity) and the trade-offs to be taken during
patch creation (patch: output clarity, output conflict), but not
because of an ambiguous description of the task description
(task description: input clarity), or misleading code comments
(system: input conflict).

C. Survey Methodology

The goal of this work is not a comprehensive survey
of papers, but a guide covering a wide spectrum of task
characteristics. Thus, we did not aim to completely cover
all works for a single well-defined area but instead aimed to
survey a wide variety of works from different communities.

We started with 23 publications that we were either familiar
with, or that we knew were well-received in their respective
communities. While this formed a good basis, we tried to
reduce the impact of our own selection bias by sampling
further factors. Therefore, we sampled the corpus of a related
literature study on confounding factors in studies on program
comprehension [11], resulting in additional 39 papers. In
combination, this results in a corpus of 62 papers.

For surveying the publications from the related literature
study and guides, we followed the SALSA (Search, Appraisal,
Synthesis, Analysis) structure for surveys [35].

Search: Our initial corpus is the corpus that resulted from
the search phase of the related study on confounding factors in
studies on program comprehension [11]. This corpus contains
publications on empirical studies of any kind and is not yet
filtered by any further criteria. As a result, we started with
842 publications on studies with human subjects published

between 2001 and 2010 at publication venues such as ICSE,
CHI, and WCRE (for a full list see [11, p.3]).

Appraisal: During appraisal, we selected publications
that covered studies or theories on programming tools in the
widest sense. Thus, we also accepted methodologies, such
as test-driven development, and language extensions, such as
aspect-oriented programming (AOP). We further only selected
publications that discussed characteristics of maintenance
tasks or described studies that used maintenance scenarios. We
included all kinds of maintenance tasks covering perfective,
adaptive, and corrective tasks on the system code as well as
on other artifacts describing the system (for example archi-
tectural diagrams or automated tests). Finally, we excluded
publications that included only minimal descriptions of tasks,
such as only numerical characteristics of the used system, or
only a description of the general application domain.

We also excluded studies that mentioned that they focused
on “end-user programmers”. As we did not encounter bor-
derline papers, we did not use a specific definition of end-
user programmers, but only the term as exclusion criteria. Our
findings may apply to such studies, but we were not confident
that our corpus would adequately cover the considerations
required for studying end-user programmers.

In a first appraisal round, one of the authors rejected
any paper on topics other than software development based
on the title or if in doubt keywords and abstract, resulting
in a set of 177 publications. The number of publications
decreased so much, as the initial corpus also contained papers
from human-computer interaction publication venues that only
occasionally include software development papers. In a second
appraisal round, two of the authors selected studies that used
maintenance scenarios or investigated some characteristics of
maintenance tasks. The two authors worked on two distinct
subsets of the corpus but discussed any publications for which
the decision may be ambiguous. The result of the second
appraisal round was a set of 68 publications.

In a third round, three of the authors went through all 68
publications and read through the studies in detail to determine
whether they describe their tasks in sufficient detail. All three
authors first read and judged the publications individually
before discussing all candidate publications and agreeing on
the final decision to include the publication. As a result, the
appraisal phase yielded a corpus of 43 publications, including
4 papers also in the initial 23 papers.

Synthesis: To gather as many factors from the selected
papers, three of the authors read through the selected pub-
lications and extracted any factors of task complexity that
they found notable. The authors did not distinguish between
whether experimenters were aware of factors or not and
extracted factors that were explicit parts of the experiment
design or only reported with little theoretical rationale. They
also individually assigned them to a variation point and corre-
sponding task complexity component (see Tables I and II).
Again, each of the authors read all publications on their
own. After completing the individual synthesis, the three
authors discussed all publications and for each factor they had



found, they decided together on the variation point and task
complexity component.

Analysis: We did not analyze the resulting collection of
factors beyond the descriptive discussion of specific combina-
tions of variation points and CCFs. We did so for two reasons.

First, our collection is designed to be purely descriptive
and we aimed to impose only enough theory on it to make it
accessible. By analyzing it further, we would impose more
theoretical assumptions onto the collection, thus making it
potentially applicable to fewer research questions.

Second, as we surveyed for variety and not for com-
pleteness, the resulting collection of factors does not allow
for definitive statements about the state of task design. We
deliberately refrained from any quantitative analysis, as most
of the factors we observed were used with little theoretical
backing. By quantifying how often which factor was used, we
would suggest a consensus between experimenters and that
some factors were actually important, which is not clear at
this point.

IV. COLLECTION OF TASK COMPLEXITY FACTORS

In the following, we describe task complexity factors for
tasks in program maintenance studies. Tables I and II provide
the complete list of factors we have identified in the collected
publications (see Section III). The following discussions of the
variation points generally arrange the factors of each variation
point as listed in the table and elaborate on factors that
pose interesting trade-offs or have noteworthy considerations
(marked with T in Tables I and II).

Through our collection, we want to help researchers in
reasoning about or shaping the complexity of their mainte-
nance study tasks. While we list factors that can influence
complexity, researchers will still have to align these factors
with their research questions. Also, our collection does not
provide guidance on other considerations such as external
validity, task difficulty, learning effects between tasks, or the
duration of tasks. They are covered in much more detail in
other guides [1], [3], [11]. Finally, our collection is concerned
with the complexity of maintenance tasks used in studies and
not in software maintenance in general [36].

A. Task Description

The initial stimulus for participants to engage with the task
will most likely come from a task description. These may
correspond roughly to the initial prompt programmers would
receive to begin the comprehension phase, such as a bug report
or a feature specification. Relevant factors affecting complexity
include the task’s clarity and ambiguity, but also the format
of its presentation and the amount of guidance.

(Output Quantity) Number of Sub-tasks: Having multiple
sub-tasks at once requires participants to decide in which order
they work on them and requires participants to distinguish
between information relevant to the different sub-tasks [37,
p- 8911, [38, p.4], [39, p.8I.

(Input Quantity) Size of Task Description: The size of
the task description is a basic factor that may influence the
complexity of the overall task. Independent of the content
and its clarity, a larger document requires participants to read
through, assess, and remember more information. However,
researchers may not always have full control over the size of
the task description. Synthesized tasks give researchers full
control of the size of the task description [37, p.891] [13].
Contrarily, researchers have less control over the size of task
descriptions collected from existing projects [40], as they may
include details irrelevant to the study, such as other business
use cases that are irrelevant to the isolated situation of the
study. Similarly, if the study is merely observing programmers
working on their usual projects [41], an assessment of the size
of the task description may only be possible after the study.

Input Guidance: If the task description accidentally hints
at the class containing the root cause of a failure, participants
might search for a defect less extensively, as they might
already find it using this unintentional hint. In contrast, some
guidance can also make it more feasible to use a large system
or a large set of sub-tasks in a study. For example, one study
provided pointers to two relevant classes out of the 301 classes
in the system [37].

B. System

Both in the comprehension and in the defect location phase,
the system in which the defect or missing feature is located
plays a major role. Participants need to understand it well
enough to form hypotheses about where defects may be
located or where a feature might be implemented. Thus, the
qualities of the system directly influence the complexity of
the task, for example through its size, the clarity of its code,
or redundancy in the means for participants to explore the
systems.

Input Clarity: With regard to clarity, we identified three
dimensions in the surveyed work.

First, the complexity of the underlying control flow in-
fluences how well the code is understood. The control flow
complexity is either characterized by a simple property such
as cyclomatic complexity or by some more involved measures
that take the cognitive complexity of program elements into
account [42]-[44].

Second, beyond this basic complexity, the overall quality
of the code also influences how well the system and task is
understood. “Spaghetti code” [45, p.33] and bad code [31,
p-21] have both been brought up by developers when asked
about reasons for difficult defects.

Third, the clarity of the system also results from the
architecture and the resulting modularity of the code base.
For example, in an architecture that directly maps concepts
of the application domain to classes, participants may have to
infer less to find code relevant for some application behav-
ior [46]. Beyond these three dimensions, researchers might
discover further relevant characteristics through the cognitive
dimensions of notations framework [47].



All of these dimensions are related to the concept of source
code readability [48], [49]. Thus, theory and study results on
general source code readability may also inform the choice
or design of the system [28]. For example, a model of the
evolution of source code readability may help determine a
suitable time in the history of a system [50]. Studies on code
readability for specific kinds of source code may help when
designing specialized tasks, for example, factors influencing
the readability of tests [51].

While all these general qualities of code are difficult to
measure, they can still be judged and described in general
terms by researchers looking into systems that may serve as
the foundation for their studies. Alternatively, code readability
analysis tools may help estimate the clarity [49], [52], [53].

System Domains: While the system’s domains and the
participant’s required knowledge are not represented by the
task complexity framework, we still include them, as it is
often reported by studies [17], [22], [33], [54], [55].* This
includes knowledge about the application domain [54], [55],
[57], as well as knowledge about the technical mechanisms
used in the system [22], [58], [59]. Programmers use different
strategies for understanding a system depending on whether
they have prior knowledge about the application domain [60].
Researchers can control to which extent the application do-
main is a source of complexity by using an application domain
that either a lot of programmers or very few programmers
have previously worked with. Technical knowledge such as
working with database interfaces or knowing special language
features also increases complexity [3, p.108]. One study
explicitly wrapped all such APIs to prevent this as a source
of complexity [22, p.2509]. Another study ensured that one
group of participants knew the architectural patterns, whereas
another group did not [44].

C. Infection Chain and Feature Location

With regard to the defect or feature location phase, re-
searchers have to decide on the nature of the infection chain
or how the feature to be adapted is distributed in the system.
In corrective maintenance tasks, participants determine the
code section that includes the defect that should be repaired.
For example, a failure that no longer occurs upon observa-
tion [45, p.33] is likely to introduce significant complexity.
When performing perfective maintenance, before modifying
the code, participants first need to determine the sections that
implement the feature or the general behavior. For example,
a feature that requires changes in multiple packages is likely
to be more complex than one that only requires a change to a
single package.

(Output Clarity) Type of Failure: Different kinds of
failures communicate different amounts of information that
can be used to track down the defect. For instance, a crash
due to an exception provides a starting point to determine the
erroneous state and follow the infection chain backward [7]. In

4Knowledge is considered a contributor to task complexity by other
models [56].

contrast, wrong behavior may not provide such a clear starting
point and require participants to first relate the observed
behavior to the run-time state [9], [22].

(Output Clarity) Type of Defect: Defects can be classi-
fied and described along a variety of dimensions, all having
different impacts on task complexity [83], [93].

A major distinction is the one between defects of commis-
sion and defects of omission [92] [3, p.111] (commission
subsumes mechanical and logic errors, categories that are
also often used [93]). A defect of commission is manifested
as a wrong piece of code. Participants can spot it while
reading the code. For example, in one study, the complexity
of actually spotting the root cause was deliberately reduced
by commenting out important code [23]. In contrast, defects
of omission result from missing code. This is more complex
to determine, as participants have to understand the code well
enough, to realize that a statement is missing.

D. Patch

Once participants understood the defect or located the places
to add the requested feature, they enter the phase of creating
a patch to address the concern. The patch is formed through
the set of modifications the participants propose to solve the
task. Following the creation, participants also have to evalu-
ate whether the patch is appropriate. Complexity introduced
through the patch is determined through factors such as the
patch’s size, its degree of scattering throughout the code base,
or the degree of novelty as opposed to solving by copy-paste.

(Output Quantity) Size of Patch: The larger the patch
needs to be, the more decisions participants need to take
in order to create it. Some studies try to prevent that the
patch generation adds any complexity by making the patch a
minimal edit such as uncommenting a statement [23] or hinting
at the specific type of change required, such as a variable
renaming [63]. Other studies keep track of the size of the
minimal or typical patch [22] [37, p.891].

(Output Conflict) Conflicting Requirements: When cre-
ating the patch, participants might wonder whether a patch
only needs to meet the functional requirements or also needs
to fit into the existing architecture and match the coding
style. Similarly, for corrective tasks, participants may wonder
whether they should simply repair the surface behavior or
aim to repair the root cause of the failure. While either one
may be acceptable for the research question, participants may
struggle when there are no clear instructions on what counts
as repairing the failure. Further, the original requirements for
the patch might be conflicting. One study explicitly introduced
complexity in that regard by asking participants to “make the
design as ideal as possible by the criteria of performance,
understandability, and reusability” [33, p. 363].

E. Tool Environment

Not explicitly stated as part of the model on debugging
phases, we argue that researchers should also consider the tool
environment in which their study is embedded. If the study
aims to evaluate a tool, this tool’s complexity is inherent to the



TABLE I

OVERVIEW OF COMPLEXITY-CONTRIBUTING FACTORS AFFECTING THE TASK VARIATION POINTS. ABBREVIATIONS REFER TO TASK COMPONENTS:

OUT(PUT), INP(UT), PRO(CESS), PRES(ENTATION).

Var. Point CCF Interpretation for Software Maintenance Tasks
Out. Quantityt one task [19], [23] or multiple tasks at a time [37, p.891], [38, p.4], [39, p.8]
Task Out. Redundancy  ensuring that the same patterns do not occur in different tasks [54]
Desc- Inp. Quantity length of task description [9] (e.g. large specification documents [61, p. 509])
ription
(II\)/_ A) Inp. Clarity explicitly stated target behavior (e.g. from a standard) or derived behavior (e.g. through demonstration of the tool [62,
p-71 [63], [64])
Inp. Inaccuracy allowing arbitrary feature additions [65, p.249]
Inp. Guidance™ deliberate hints to the defect location / feature location [37, p. 891], [66, p. 5], [63, p. 5], avoiding hints [67, p. 5], [68,
p- 51, [69], explicit sub-tasks that lead through the process of locating defect / feature and generating the patch [68],
[70], ordering of tasks guides through system [57], [71]
Inp. Mismatch task description in different natural language than other documents or identifiers in code [72], [73]
Inp. Redundancy  multiple ways to understand the task (e.g. natural language description and tests [23], [37], [74], screenshot of
result [63], demonstration of result [62], [63])
Pres. Format using corresponding diagrams (state diagram for target automaton [75, p. 604], sequence diagrams of main scenarios
to be implemented [73, p. 69])
Inp. Quantity LOC, NOM, NOC, NOP, etc. [13], [22], [23], [40], [41], [44], [54], [58], [59], [62], [74], [76]-[81], quantitative
characterization of the system part that is relevant to task [13], [22], [63], [76], [79], feature set [66], [68], [74]
System Inp. Clarity domain: complexity and quality of algorithms [5], [43], [54], [31, p.21]
(IV-B) control flow: CYCLO, cognitive complexity [42]-[44]
architecture: closeness of mapping from domain to code [46], suitability of architecture for the patch [73, p.67],
coupling and cohesion [82, p.988], usage of specific abstractions [83]
other: system is based on multiple languages [77], system only uses a reduced version of a common language [84],
syntactic characteristics [83]
Inp. Mismatch surprising use of programming language [3, p.108f.], confusing identifiers [3, p.108f.], speaking identifiers [73,
p. 69], deliberately obfuscated identifiers [67, p. 5]
Inp. Inaccuracy complete source code available or only sections [22] (e.g. only client code without server code [85, p.5])
Inp. Redundancy  providing no additional documentation [13], [22], removing existing documentation from code [86, p.3], providing
additional material describing the behavior (user manual [37, p. 891], [40], [62], [78], [87], specification [39], object
diagram / class diagram [87, p.5]), providing entrypoints to code [79]
Inp. Conflict documentation contradicts source code ((deliberately) obscuring comments [37, p. 891])
Inp. Guidance system walkthrough pre-experiment and explanation of major parts of the system [63]
Infection Out. Quantity number of source code locations [39], [88], [89] (reduce number of relevant modules [90], mark regions that are
Chain / potential sources [63]), length of infection chain [31], [45], number of failures per task [13], [23]
Feat
Leofci:;ltﬁzn Out. Clarity™ type of failure (compilation error, crash, wrong behavior, missing behavior [7], [22], [39]), type of defect [22], [23],
(IV-C) [76], [83], [91] (e.g. null handling, accidental modification of meta-objects), commission or omission [92], [93], [3,

p.111] (e.g. commenting out code instead of removing it [23]), defect can be in system or test code [57], declaring
number of defects [22], [23] or only existence of defects [61, p.509], [57, p.3]

study. However, programming tools are rarely used in isolation
and the choice or availability of additional tools can have
an impact on the complexity of the task. For example, tools
that aid participants in navigating and analyzing the software
system, such as a means to browse references, can support
formulating hypotheses, while a debugger or a REPL can help
in testing hypotheses.

F. Overall Considerations

Finally, some factors may influence task complexity beyond
the individual variation points and throughout the overall study
design. These factors can include imposing and communi-
cating a time limit [73, p.69] [19], providing guidance or
interventions from the researchers [33], or non-routine events
that interrupt the participants [13], [63], [80].

V. EXAMPLE CRITIQUE OF A MAINTENANCE TASK

Our collection describes a list of factors that contribute to
task complexity. However, as this is a general list, researchers
will still need to align the factors with the research questions
of their studies. To illustrate how our collection may be used
in this regard, we critique a task from a preliminary study
of ours with regard to the complexity-contributing factors.
The full analysis of all factors is beyond the scope of this
example analysis, thus, we focus only on interesting factors
relevant to the study. For each factor, we describe whether
we aim to make it simple or complex and why. For some
factors, the complexity is a result of other decisions and we
can not influence it. In these cases, we analyze the expected
complexity and whether this aligns with the research question.

The task is part of an unpublished study on the influence



TABLE I

CONTINUED OVERVIEW OF COMPLEXITY-CONTRIBUTING FACTORS. ABBREVIATIONS REFER TO TASK COMPONENTS: OUT(PUT), INP(UT), PRO(CESS),

PRES(ENTATION).

Var. Point

CCF

Interpretation for Software Maintenance Tasks

Patch
(IV-D)

Out. Quantityt

size of patch (size of minimal / typical patch [37, p.891] [22], [44], [84], measuring size of patches during
experiment [77], [94]), size of element to be changed (change of number / change to method [71, p.5]), specifying
type of change (rename variable [63]), minimizing patch size via a statement that is commented out [23]

Out. Clarity

matching changes to locations (changes across files [37, p.891], [40], [44], system structure prepared for the
patch [64, p.5] [54, p. 169], specifying a section where changes are to be made [63]), providing a skeleton to guide
implementation [58], [95]

Out. Conflict™

writing the patch in actual code or as change recommendation [96] or as general natural language description [81],
root cause vs symptoms, asking to optimize several dimensions at once (e.g. performance, understandability, and
reusability [33, p.363]), making quality expectations explicit (e.g. prototyping not production-level code [97])

Out. Redundancy

multiple valid solution and no clear metric to decide (explicitly allowing multiple solutions [13], patch designed as
minimal edit [23], [59]), patch already exists in similar form in system [54], providing sample code to account for
unfamiliarity with API [63], [78], [94]

Tool
Environ-
ment
(IV-E)

Pro. Clarity

providing tools to reproduce behavior (test runner [23], [37, p. 891], [59], tests and mock objects [75, p. 604]), explicitly
prescribing the process (e.g. TDD [70, p. 6])

Pro. Qty of Paths

availability of different tools (noting available standard tools [22, p.2510], [34], [63], disabling other tools to various
extents [19], [76], [79]), optional tool for control group that corresponds to tool under test [63], tasks can be
accomplished either with tool under test or with built-in IDE features [59], [63]

Pro. Conflict

avoiding tools to mitigate impact of technical problems (using pen and paper [84], writing change proposal instead
of code [96]), tools masking defects or suggesting wrong hypothesis (stepping debugger for a race condition), tool to
be used is deliberately not helpful for the task [69, p.6]

Pro. Qty of Steps

number of steps to get some particular information (compiling vs REPL workflow or debugger vs printf)

Overall
(IV-F)

Time

communicating a time limit [12], [18], solving as many tasks as participants can in a time frame [12], [80], announce
reward for fastest and/or most accurate solution [63], [97], time sink task: it does not count and takes long but
participants do not know that and thus it creates time pressure [73, p.69], explicitly state that progress is not
relevant [40, p.437], explicitly ask to emphasize speed over correctness [19]

Guidance

intervening during experiment to clarify or repair issues [33]

Non-routine Event

crashes of the tooling, deliberate interruptions [13], [63], [80]

of task complexity on the efficiency of live programming
tools used in debugging (for details, see the accompanying
artifact [99]). We operationalize debugging efficiency as the
time to repair a given failure. Participants either worked with
a set of live dynamic tools® (live object inspector, live code
editing, live UI inspector, edit-and-continue debugger) or a set
of baseline programming tools (basic stepwise debugger, basic
object inspection). The study is conducted in the exploratory-
style live programming environment Squeak/Smalltalk [98].

Programmers work on several tasks, one task after another.
We expect dynamic tools to mostly help programmers with
localizing defects and evaluating their patches. We do not
expect the tools to help participants with understanding the
system in general and generating the patch. Thus, we want
participants to spend most of their effort on defect localization
and patch evaluation. Further, as we are looking into the
influence of task complexity, we require tasks that are either
simple or complex in relation to each other.

A. System

The selected system determines the way we can influence
subsequent variation points. We wanted to investigate the
usage of dynamic tools in a scenario beyond a small module,

5Dynamic tools, in contrast to static tools, are tools that work with dynamic
information on the system behavior.

Fig. 1. A screenshot of the game Jump-O-Drom used as the system in our
example study

but needed to stay within realistic time limits. We chose a
small game as the system, as games combine a variety of
concerns such as event handling, state propagation, file 1/O,
rendering, and algorithms. This variety allows us to define
tasks that cover different parts of the system. The game we



1) Open the game settings in the main menu

2) Change the setting “Minigame Selection” to
”JodHotPotatoMinigame”, by using the keys
for “left” and “right”

3) Start the game

4) Wait until you see a player explode

Both players explode in quick succession. Only one
player should explode and then the potato should go
to a random player. The goal of the game mode is
that you don’t have the potato when it explodes. The
potato can be given to the other player by jumping
on them from above.

Fig. 2. An English translation of the task description.

used in our study is named “Jump-O-Drom”. It is a multiplayer
jump-and-run game in which most rules can be changed
resulting in a large number of different game modes (see
Figure 1).

Regarding quantity (input), the game has a large feature set:
configurable game modes, configurable physics, configurable
player appearance and controls, extensible collision handling,
level editor, temporary effects on players, abilities for players,
sound, and custom widgets and menu classes. At the same
time, the source code can be considered small (3052 LOC, 73
classes, 759 methods, 8 packages).

We were mostly interested in how programmers apply
dynamic tools to fix a defect, not how they use them to learn
about a system in general. Thus, we provided guidance (input)
with regard to the general system behavior by introducing the
module structure and important classes of the game. We used
a fixed script to avoid providing any additional guidance that
might influence the complexity of the individual tasks.

Similarly, as we were not interested in how programmers
explore the present behavior of a system, we made the de-
scription of the game behavior redundant (input) by giving an
interactive tutorial on the gameplay.

Concerning clarity (input), we wanted to ensure that we do
not observe tool usage resulting from unnecessarily complex
code or a convoluted architecture. Thus, we ensured that the
project contains no significant idiomatic or architectural flaws.

B. Task Description

We were not interested in how or how well participants can
comprehend the description of the failure. Thus, we aimed to
reduce the complexity in the task description (see Figure 2).

For one, we aimed at reducing the complexity by keeping
the quantity (input) down with a concise description of the task
(see Figure 2). We included the steps to reproduce the failure,
a description of the observable symptoms, and a description
of the expected behavior. Further, we aimed to keep the
description clear (input). Therefore, we used a consistent
structure throughout all tasks, which distinguishes between the
steps to reproduce the failure and the observable as well as the
desired behavior. The structure was visually reinforced through

a dedicated graphical tool presenting the tasks. Further, we
used consistent vocabulary for interactions, parts of the game,
and observable behavior throughout all tasks.

We want participants to make use of the tools to generate
and test hypotheses about the failure. Thus, while the task
description should be clear, it should at the same time only
provide little guidance about the actual process of repairing
the failure. Therefore, we aimed to give as few hints on the
source code location of the defect as possible. For example,
to not give away the class in which the defect is located, we
did not use any terms related to the class name.

C. Infection Chain

Our main interest in this study was the way participants
use dynamic tools to determine the defect location. Thus, we
needed to make the defects complex enough for participants to
spend considerable effort on locating them, while at the same
time keeping them doable in the available time.®

The defect in our example task is a missing reset of the
timer that triggers the explosion of a player. As a result, the
explosions are directly triggered in each successive game step.

We used the size (output) of the infection chain to ensure
that the defects could be found in the available time frame.
Therefore, we spread the defect, infection propagation, and
failure among few classes. In the case of our example class,
the whole infection chain is limited to three classes. Also, we
did not want to observe special debugging techniques, thus we
limited the tasks to one defect per failure.

At the same time, we needed to ensure that participants
had to invest enough effort into locating the defect so that
they had a reason to use dynamic tools. To achieve that,
we used characteristics that influence the clarity (output) of
the infection chain. For example, the failure should require
participants to determine code locations responsible for the
observable game behavior first. Thus, our example task and
all other tasks in the study are observable as wrong game
behavior, and not exceptions or crashes, as they would provide
an obvious starting point for tracing the infection chain. At
the same time, we did not want participants to make too
many assumptions about the intended behavior. Thus, while
the defect leads to wrong behavior, the defect is a mere
programming error and not a specification error.

Finally, to distinguish between different levels of complex-
ity, we used defects of commission for simple tasks, and
defects of omission for complex tasks. Thus, as the missing
reset of the timer is a defect of omission, we consider our
example task a complex task.

D. Patch

For our study goal, the complexity of the patch should
ideally trigger the usage of dynamic tools to determine suit-
able source locations, inspect objects, and evaluate potential
solutions. At the same time, to get comparable observations,

SWe also considered aspects such as learning effects between defects, but
as these are not covered by our collection and other guides on experimentation
cover them in much greater detail, we do not discuss them in this paper.



we wanted to keep determining the target behavior simple.
So, determining what to implement should be simple, while
determining how to implement it should be complex.

In our example task, the fact that the timer needs to be
reset should be obvious when the defect is identified correctly.
Participants then still have to determine implementation details
such as the correct location and methods to reset the timer.

The clarity (output) of the location and code for the patch
differs between defects of omission and commission. For a
defect of commission, determining the location of the patch is
simple and the surrounding code already limits the number of
possible methods. For a defect of omission, finding a suitable
location is more complex and as the missing statement needs
to be created, there are fewer constraints on the code to be
written.

Determining what to implement is kept simple due to the
limited number of redundant (output) target behaviors. Due
to the small size of the defects, participants should be able to
describe the target behavior given that they correctly identified
the defect. To make deciding on a target behavior even simpler,
we aimed to prevent conflicting goals (output), by explicitly
asking participants to work on the patch until they are as sure
of it as they would when committing it to one of their own
projects.

E. Tool Environment

In our study, we do not study a particular tool, but the
general usage of dynamic tools for debugging tasks. As we
were interested in the usage frequencies for particular tasks in
comparison with other tools, participants had access to all tools
available in the Squeak/Smalltalk programming environment.

Regarding the clarity (process) of using the tools to observe
the behavior, we did not provide automatic tests, as they would
be obvious starting points. Further, concerning the quantity of
paths (process) to employ the tools, we provided no hints on
what they should use. To make sure participants are aware of
all potential tools, we briefly recap the available tools at the
beginning of a run.” Finally, to prevent that a larger quantity of
steps (paths) to get to relevant information prevents the usage
of tools, we also recapped keyboard shortcuts and context
menus.

F. Discussion

Our collection of task complexity factors guided us through
the initial design of our tasks. Through the collection of
factors, we were able to get a grasp of the task characteristics
and in which regard they may be complex. This in turn allowed
us to shape the tasks more deliberately, such as making the
infection chain complex instead of the task description or
choosing a system with a simple architecture to reduce the
effort spend on system comprehension.

In addition to employing the collection, we also ran a pilot
study with four prospective participants. For our example task,
we observed that most pilot participants found the state error

7We only recap the tools, as participants are familiar with the environment.

and the defect in code too quickly for interesting strategies
to emerge. By putting our observations into terms of our
collection of task complexity factors, we determined that the
original task description provided too much guidance and that
the length of the infection chain was too short. We removed
terms related to the defect location from the task description
(resulting in the description in Figure 2) and introduced two
new methods in the infection chain. In subsequent pilot runs,
participants had to put in more effort to reach the infection
and find the defect.

VI. CONCLUSION

We presented a collection of task complexity factors tailored
toward software maintenance tasks used in studies on pro-
gramming tools. It is intended to help researchers struggling
to design or choose appropriate maintenance tasks for their
studies. By going through the different factors for each of the
five variation points of the tasks, we hope that they approach a
complete picture of the ways their tasks are simple or complex.
Accordingly, they may discover aspects that should be simpler
or more complex depending on whether they are relevant to
their research questions.

By design, our collection does not provide means to judge
task difficulty, as this ultimately depends on the combination
of task complexity and the personal resources of the individual
participants. The challenge for researchers remains to match
task complexity and participants in a way that the task diffi-
culty is suitable for the research questions.
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