
How Live are Live Programming Systems?

Benchmarking the Response Times of Live Programming Environments

Patrick Rein? Stefan Lehmann? Toni Mattis? Robert Hirschfeld?, ‡
? Hasso Plattner Institute, University of Potsdam, Germany

‡ Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA
{firstname.lastname}@hpi.uni-potsdam.de

ABSTRACT
The idea of live programming has been applied in various domains,
including the exploration of simulations, general-purpose applica-
tion development, and even live performance of music. As a result,
di↵erent qualitative definitions of the term live programming exist.
Often, these definitions refer to a sense of “directness” or “imme-
diacy” regarding the responses of the system. However, most of
them lack quantitative thresholds of this response time. Thus, we
propose a survey of live programming environments to determine
common response times the community regards as su�cient. In
this paper, we discuss the design of an initial survey focusing on
general-purpose live programming environments. We describe the
selection process of systems and the benchmarking model to mea-
sure relevant time spans. We illustrate the potential outcomes of
such a study with results from applying the benchmarking model to
Squeak/Smalltalk and the Self environment. The results hint that a
quick adaptation of the executable form might be a common feature
of live programming environments.

CCS Concepts
•Software and its engineering! Integrated and visual develop-
ment environments; •Human-centered computing! Empirical
studies in HCI;

Keywords
live programming, system response time, benchmark model, empiri-
cal study

1. INTRODUCTION
Live programming has been available for a variety of domains,

such as performance art, developing graphical user-interfaces, and
also general application development. In all these domains, the
impression of programming a live system is created through a variety
of mechanisms, including visual representations of the system state,
results of executions with example input, or direct and persistent
manipulation of applications objects at runtime. Besides general
factors such as how intuitive the visualization is or to which extend

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PX/16, July 18 2016, Rome, Italy
c� 2016 ACM. ISBN 978-1-4503-4776-1/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2984380.2984381

the runtime state can be manipulated, the delay between changes to
the source code and observable changes in the system behavior is
relevant to create an experience of “liveness”.

One qualitative definition describes this experience as: “. . . , the
computer wouldn’t wait but would keep running the program, mod-
ifying the behavior as specified by the programmer as soon as
changes were made.” [24] This definition explicitly states that the
change to the executable form should be applied “as soon as” the
changes to the source were made and without the developer initi-
ating it explicitly. Another qualitative definition mentions that the
feedback on the system should be “. . . presented so as to be con-
stantly present and constantly meaningful” [12]. Again the term
“constantly meaningful” implies that there should be no noticeable
period in which the feedback does not represent the runtime state.

These definitions can guide the development of features of a new
live programming platform. However, it does not yet help program-
mers in judging whether the duration of the feedback loop is actually
short enough to enable an experience of programming a live system.
For example, two object-oriented live programming system with
hot-swapping support might allow the exchange of methods during
the execution of an application. However, in one system the trans-
lation and swapping of a method might take 10 seconds while in
the other system the same process might only take 10 milliseconds.
Both do comply with the qualitative definition but do greatly vary in
the experience of liveness they can provide. Further, a short delay in
updating a method in a running system provides the system designer
with greater freedom in creating feedback mechanisms matching the
application and domain at hand.

In order to provide guidance for future live programming platform
development, we propose a benchmarking model for live program-
ming systems to assess the duration of the feedback loop. The
model separates individual phases to distinguish between system-
dependent and application-dependent factors and is based on a no-
tion of system-response times [21]. In a pilot study based on this
model, we have also determined the duration of the feedback loop of
two existing live programming systems: Squeak/Smalltalk [13] and
Self [26]. These figures and the results of future studies might help
platform developers with design decisions for new live programming
systems.

In the following we will first describe the experience of live pro-
gramming in more detail (section 2). Based on this general notion
of live programming, we introduce our benchmarking model (sec-
tion 3). We then describe the design of a study based on this model
with the goal of analyzing various live programming systems (sec-
tion 4). We also present first results from a pilot study using two
exemplary systems (section 5). Finally, we discuss the preliminary
results and potential outcomes from conducting an extensive study
(section 6).

1

2. DEFINING THE EXPERIENCE OF LIVE
PROGRAMMING

Live programming environments are developed and used in many
di↵erent domains. Most of them share the common goal of making
programs easier to explore and understand. Some authors stated
that live programming might be an adequate way to bridge the gap
between the static source code and the dynamic behavior of an appli-
cation [16, 20]. Some claim that live programming can enable this
because short feedback loops might sustain the impression of causa-
tion between a change to source code and a corresponding change
in the behavior of the application [25].

In general, these environments support live programming through
a short time span between a change to source code and an observable
change in behavior of the application. Additionally, they do apply
the change while the application is running and without discarding
the current state of the application completely. Thus, they preserve
the context in which the change was applied [10].

One definition of live programming uses these properties to quali-
tatively distinguish between di↵erent levels of live programming [24].
The levels 1 and 2 are concerned with the semantic representation
of code an whether the representation is executable itself. Levels
3 and 4 are what current live programming environments typically
support. Level 3 liveness is supported when an edit operation of
unspecified granularity triggers any computation by the system. So,
an environment in which unit tests are executed every time a file is
saved, does support level 3 liveness. Level 4 liveness is supported
when the changes to the program are applied as soon as the changes
where made, without the user explicitly initiating the application
of the change, and while the application is running or potentially
so [23]. So the application would not wait until a user finishes a
modification to run the application but the application constantly
remains running.

Another definition of live programming, which is based on the
concept of “steady frames”, puts more emphasis on the preservation
of context [12]. A steady frame is a way to provide live and contin-
uous feedback which preserves the context of an activity. The goal
is to make programming a continuous activity such as aiming with
a water hose, instead of an activity with discrete independent steps
such as aiming through shotting single arrows. An activity with a
steady frame is organized such that "(i) relevant variables can be
seen and/or manipulated at specific locations within the scene (the
framing part), and (ii) these variables are defined and presented so
as to be constantly present and constantly meaningful (the steady
part)." [12] Therein, the selection of relevant variables mainly de-
pends on the activity and the concrete task at hand. Further, the
presentation of the variables also depends on the domain but should
make relationships between the manipulated parts of the system and
the goal easy to perceive.

2.1 Variations of Live Programming Environ-
ments

The di↵erent aspects of live programming are implemented on
various levels, each with their own trade-o↵s. Each approach creates
a di↵erent kind of live programming experience. Thus there is a
spectrum of liveness which covers environments such as auto-testing
setups, Read-Eval-Print loops (REPLs), and systems where tooling
and application share the same runtime.

One group of live programming environments is based on data
flow abstractions. They are used in particular domains, for exam-
ple in live music production, visual signal processing, or graphical
user interfaces (Viva [23], Max Language [7], Vivide [22]). In
general, these environments represent continuous streams of data
flowing through processing elements connected to each other. A

Figure 1: A screenshot of the Chrome developer tools show-
ing a modified event handler (hovermeMouseOut). The logging
call was added to the handler and the console below shows the
resulting console output. The new behavior became active with-
out a reload of the page. [11].

Figure 2: A screenshot of Squeak/Smalltalk showing graphical
objects as well as tools for inspecting them in the same environ-
ment. [4].

modification of the behavior of single processing elements or of
their combination changes the output immediately and thereby pro-
duces immediate feedback as if "one physically changed wires and
parts on a video-processing circuit while it was plugged in and run-
ning." [23]

Data-flow-based environments can provide immediate feedback
and preservation of context through the underlying abstraction. How-
ever, they are limited to domains which can be expressed with data-
flow abstractions. In contrast, general-purpose environments have
to introduce additional mechanisms to allow for live programming.

Some environments implement live programming through hot-
swapping support. Hot-swapping allows to replace parts of the exe-
cutable form of an application while the application is running. As
a result, the application can continue the execution from the state
at which the change was applied with changed behavior. Examples
of hot-swapping-based live programming systems include various
Smalltalk implementations and also the Chrome web development
tools which allow for replacing graphical elements of web pages
and also for replacing JavaScript functions without reloading a web-
page [11]. The technique of hot-swapping in general allows for
incremental and therefore quick changes to the executable form and
preserves the current context of a change.

Other environments solve that problem by re-starting the appli-
cation on a change. In order to bring the application back to the
state at which the change was applied, the environment replays the

2

Figure 3: A screenshot of the APX system showing traces of the
positions of the drawn circles. On a change to the code on the
left, the traces would change and show what path the circles
have taken with respect to the new code [18].

Figure 4: A screenshot of the Elm debugger showing the code
on the left side, the current runtime state in the middle, and a
tool for navigating back in time on the left. Again changing the
code on the left changes the resulting state directly [2].

application. To achieve this they have previously recorded any in-
put events and replay them at appropriate moments. The resulting
state of the application is not the same as it was when the change
was applied, but reflects how the state would look like if the change
had always been there. Notable examples of such environments are
Elm [8] or APX [18]. These two approaches to general-purpose live
programming take di↵erent views on the past of the current state.
The former environments treat the past as “immutable” while the
later treat it as “mutable”.

These kinds of environments enable level 4 liveness. Other envi-
ronments do achieve level 3 liveness through a quick way to restart
the system and to execute tests or small pieces of code. This way
the state is not preserved but the developer can quickly get feedback
on changed behavior of the system regarding the exemplary code
segments.

3. LIVE PROGRAMMING BENCHMARK
MODEL

There is no general implementation strategy for live program-
ming systems as the applicable mechanisms depends on the domain
at hand. Hence, we aimed to create a general model to allow for
comparison between these di↵erent kinds of live programming sys-
tems.

The model is based on a general model for response times in user-
interfaces [21]. This model measures the time from the moment
users initiate an action to the moment they can recognize any kind
of response from the system. This response does not have to be
a final result corresponding to the action. It may also be a busy
indicator making clear that the system accepted the input and is
processing it.

While this response time model targets user interactions in gen-
eral, our model focuses on the specific interaction of changing an
application. We measure the response time as the time span between
the completion of a change to the source code and an observable
change in the behavior of the application (see Figure 5). Conceptu-
ally, this process comprises a modification of the program itself and
not only of the mere source code.

In some environments, the overall duration of this time span does
not depend solely on the capabilities of the platform but also on the
application under development. A platform such as Squeak/Smalltalk
can, for example, support live programming as it can exchange any
part of an application while it is running, so if a programmer changes
the behavior of a graphical object, the object will instantly behave
di↵erently. However, there will be no immediate feedback if, for
example, a property of a graphical object depends on behavior only
executed during the initialization of that object.

To distinguish between the capabilities of the platform and the
factors introduced by the application, we separated the response
time in our model into two phases (see Figure 5): adaptation and
emergence.

3.1 Adaptation
The adaptation phase spans from finishing a change to the ab-

stract representation of the application to an updated executable
form of the application in memory. The abstract representation of
the application can be for example source code, a graphical model,
or tiles. The phase starts when a user finishes a change, for example
by dropping a tile in a new position or saving an edited text file.
Converting this representation to an executable form often includes
some form of compilation. After this translation, the application
needs to be updated in memory. Some platforms are capable of
replacing only some parts of the application ("hot-swapping") other
require a reload of the binary. The adaptation phase is completed as
soon as an executable form of the updated behavior is loaded into
memory and can potentially be executed right afterwards.

3.2 Emergence
The next phase comprises the emergence of an observable change

in the behavior of the application from the adapted executable form.
An observable change can be for example a changed textual output
on the console, a di↵erent color of a graphical element, or a changed
way of moving of a graphical element.

The nature of the change can have an influence on when it actually
becomes observable. If a graphical element gradually and slowly
changes its color from blue to green, the change in behavior might
only be visible after the color is “di↵erent enough” for the observer
to recognize the di↵erence. The model does not cater for these
cases and we assume a distinct change as soon as the new behavior
is executed. In general, the observability of such changes can be
improved by the overall design of the feedback mechanism. These
factors are not captured by our model.

Further, the observation of changed behavior is independent of
the feedback being correct in the sense that it behaves as expected.
In contrast, the quick observation of behavior that does not seem to
be meaningful becomes useful as a hint that there might be an error
in the code.

3

System Response Time

Adaptation Emergence

Change to code
applied

Executable form
adapted with change

Observable change
in behavior

User
applies

a change

User
interprets

output

Figure 5: The phases from a modification of the code to an observable change in the behavior, which provides developers with
feedback on their changes (adapted from [21]).

For a change to emerge from a modification of the source code,
the updated behavior has to be executed. How quickly this occurs
after the adaptation phase depends largely on the application. A
game or a simulation which is continuously running might execute
the new behavior in the next iteration. A graphical tool with a
complex initialization phase might require a restart to execute the
new behavior.

Nevertheless, this also depends on the capabilities of the platform.
A data flow system does exclude this issue on a conceptual level,
as there is a continuous flow of data and as a result it provides
continuous updates of outputs. Further, platforms which allow for a
mutable past, can rerun initialization phases. Other platforms might
provide tooling to rerun small examples or tests continuously.

4. STUDY DESIGN
As a first application of the model, we plan a study on response

times of general-purpose live programming environments. To en-
sure comparability between the results of individual environments,
we devised criteria on how to select relevant parts of a system to
benchmark using our model.

4.1 Benchmarking Process
We created a common benchmarking process as live programming

environments have di↵erent units of change (for example functions,
classes, objects, files, nodes, tiles). As we are interested in the live-
ness a developer can expect from an environment, we want to ensure
that we are measuring the response time for changes as a developer
would create them. For example, while the Elm environment uses a
functional language, so most changes will a↵ect functions, the unit
of change is a file. A developer is not only starting the adaptation
phase with a single function, but always with a complete file. The
single steps to apply the model to an environment are:

1. Determine relevant units of change from the developer per-
spective. Use the most common ones.

2. Determine relevant operations on these units of change (add,
modify, delete, compound operations (for example refactor-
ings)).

3. Select representative code samples which reflect the complex-
ity or length of a common unit of change of the environment.
The sample should also work in combination with any emer-
gence mechanisms of the environment, for example a replay
system works well for a system with user inputs and does not
match a long-running computation.

4. Apply the model from the perspective of a developer, so the
run should include all activities which would be triggered
when a developer saves a unit of change (for example regard-
ing logging or persisting changes).

4.2 Candidate Environment Selection
In our first study, we want to focus on live general-purpose pro-

gramming and learning environments. First of all, we exclude envi-
ronments dedicated to particular domains such as audio processing,
video processing, or cyber-physical systems as some of them can
make assumptions not applicable to general programming such as
data-flow semantics or asynchronous computation. Some of them
also have very specific response time requirements as they control
real-time processes. Our first study will include environments which
satisfy the following four criteria without modifications to the envi-
ronment.

(1) The environment has to allow the persistent development of a
program. This means that there has to be a way to store and retrieve
the resulting code and state of the application in the environment.
This will exclude REPLs from this particular study (while REPLs do
implement live programming features we want to keep the focus of
the study focused on environments for persistent application devel-
opment at this point). (2) From a user perspective the tools for edit-
ing the abstract representation of the application should run in the
environment where the application is running. (3) The environment
should allow level 3 live programming without any modifications to
the execution environment or the standard library. (4) It has to allow
for level 4 live programming without extensions for the execution
environment. However, the environment can provide extensions for
particular types of applications, for example graphical applications.

4.2.1 Candidates
Based on these criteria we have selected the following environ-

ments:

• Self [26]: General-purpose, prototype-based, UI manipula-
tions can e↵ect code manipulations, self-sustaining

• Lively Webwerkstatt [14]: General-purpose, prototype-based,
web-based, self-sustaining

• Squeak/Smalltalk [13]: General-purpose, object-oriented, class-
based, self-sustaining

• Etoys [9]: Learning environment, tile-based programming

• Elm [8]: General-purpose, functional, live programming ca-
pabilities introduced through tools

• SLIME [3] with CLISP [17, 1]: General-purpose, functional,
self-sustaining

5. PILOT: SQUEAK / SMALLTALK AND
SELF

To assess the nature of the results of the study, we conducted
a pilot study with the Squeak/Smalltalk and the Self environment.
Both environments enable level 4 liveness as they translate changes

4

to source code incrementally to changes to the executable form. The
executable form can also be updated while the application is running.
They thereby implement an immutable past model, which makes the
emergence time highly variable and almost completely dependent
on the application at hand. Thus, we focused on the adaptation time
in the pilot study.

5.1 Technical Specifications
All benchmarks were executed on the following system:

• Intel CPU i5-4690 @ 3.5 GHz, 4 Logical cores

• 7926 MB Main Memory

• Ubuntu 15.10

5.2 Squeak
In Squeak/Smalltalk, a permanent description of behavior is gen-

erally expressed through methods contained in classes. The relevant
units of change are therefore individual methods, super class rela-
tions, and instance variable declarations. For all three elements, the
developer can create, modify, and remove them. To keep the pilot
study focused, we chose to only measure the most common activity,
which is modifying a method.

5.2.1 Setup
To measure the adaptation phase duration from the perspective

of a developer, we measured the duration of a call to the callback
of the save button, respectively the keyboard shortcut for saving.
This corresponds to the interactions of a developer during the ordi-
nary development workflow as the user can only save one method
at a time using the standard tool set. As a representative sample
of source code we have selected all methods available to us in the
Squeak/Smalltalk image at that point. These code samples include
methods describing basic system operations such as sorting or fil-
tering collections, as well as methods as parts of larger applications
such as the code browser. This resulted in a test set of 50,525 meth-
ods. We measured each method 20 times.

The specifications of the execution environment are:

• Squeak 5.0 (Update 15113)

• Croquet Closure Cog [Spur] VM [CoInterpreterPrimitives
VMMaker.oscog-eem.1405]

5.2.2 Results
An overview of all results (see Figure 6) shows that the measure-

ments can be separated into two distinct groups, one above 750 ms
and one below 50 ms. The group above 750 ms consists only of
methods which describe an Etoys menu structure. These methods
are treated di↵erently by a compiler extension and thus result in
such high measurements.

A detailed view on the group below 50 ms (see Figure 7) reveals
that there is a slight increase of the adaptation phase duration with in-
creasing method length, which is expected as longer methods should
require more time to compile. Nevertheless, for all method lengths
the measured times stay under 4 ms.

5.3 Self
In Self, the behavior of a system can be modified through objects

or slots contained in objects. There are four types of slots: read-only,
read-write, method, parent. Objects can be cloned and slots can be
added, modified, or removed. Modifying read-only and method
slots is only possible through the object editor, while the value of
read-write slots can also be modified through evaluating expressions.

Figure 6: An overview box plot of the results of the Squeak
benchmark showing the whole range of result values.

Figure 7: A detailed box plot of the major group of measure-
ments from the Squeak benchmark.

Figure 8: An overview box plot of the results of the Self bench-
mark showing the whole range of result values.

5

Figure 9: A detailed box plot of the major group of measure-
ments from the Self benchmark.

Again, for the pilot study, we focused on the most common activity
for changing the behavior, which is modifying a method slot. Similar
to the Squeak/Smalltalk environment, programmers can only save
one method slot at a time.

5.3.1 Setup
To measure the adaptation phase duration from the perspective

of a developer, we have instrumented the method in the code editor
object which is called when the user saves a function. In there, we
have measured the duration of the function call which compiles and
installs a new version of a function.

As a representative sample of Self source code we selected 13
core traits (string, list, collection, vector, clonable, integer, float,
morph, rectangle, point, random, hashTableSet, outliner). Most of
these traits contain basic system code and the outliner trait contains
the more complex behavior of a graphical tool. We measured the
duration of the adaptation phase for all their containing functions.
This resulted in a candidate set of 729 functions. During the bench-
mark, we triggered the save callback function for every function 5
times. The specifications of the execution environment are:

• Self Virtual Machine 4.1.13

• World Builder Script from commit 978982b of https://github.
com/russellallen/self

5.3.2 Results
An overview of the results (see Figure 8) shows several outliers

beyond 200 ms. These are single measurements and do not stem
from single method slot modifications. Thus, we attribute these to
garbage collection or operating system scheduling artifacts.

The measurements below 200 ms (see Figure 9) show no obvious
increase in the adaptation phase duration with an increasing number
of lines of code. This hints that the compile time only makes up a
small portion of the overall adaptation phase duration. Nevertheless,
the median duration stays under 50 ms and except for 8 outliers all
measurements stay under 200 ms.

6. DISCUSSION
The measurements from the pilot study hint some conclusions

which might be secured by a larger study. First of all, a short
adaptation phase duration might be a common property of live-
programming environments. Second, the evaluation of the emer-
gence phase might only yield useful results for mutable past and
data flow environments as they implement mechanisms to deal with

this phase. Additionally, it is yet to be determined whether the model
should explicitly account for the restoration of state.

6.1 Short Translation Phase
Both benchmarks yield that the median adaptation phase takes

less than 50 ms for common modifications. This short adaptation
phase duration might be a common property of live programming
environments, given that they aim to invoke an impression of im-
mediacy for changing the executable form of the application. From
the perspective of a designer of live programming environments, a
short adaptation phase might thus be considered a necessary feature.
However, the results from the pilot study are not reliable enough yet
to state an adaptation phase duration upper boundary.

6.2 Emergence Phase
A consistently short emergence time is beneficial for a live pro-

gramming environment, as it might enable constant feedback for
developers. However, immutable past systems, as Squeak/Smalltalk
and Self, do not guarantee a short emergence phase without exten-
sions. Thus, our model might yield many "not applicable" results
for the emergence phase duration for similar systems.

However, to still demonstrate common emergence times in these
systems, it might be beneficial to analyze the system in combina-
tion with at least one extension which enables a consistently short
emergence phase. For example, in Squeak/Smalltalk we could take
the Morphic framework into consideration, which allows for the pe-
riodic execution of callbacks on graphical objects. We would then
measure the emergence based on common examples for that exten-
sion. This however impedes comparability between systems, as each
extension might have a di↵erent optimal example.

Another way of measuring the emergence phase in a comparable
way might be to create a set of programming challenges which cater
for di↵erent kinds of live programming systems. These should then
be implemented in each system and the emergence of a specific
behavior might be measured. By doing so the benchmark might also
describe the design spectrum of live programming experiences.

Further, the emergence phase does not take the psychological ef-
fects of the feedback into account. It only measures the response
time as a technical property of the system. We assume that the way
the feedback is presented substantially influences the time it takes
the programmer to gain insights from the changed behavior of the
system. For example, if the results of executions on multiple exam-
ple inputs are presented it might become easier for the programmer
so grasp the overall behavior of the system.

6.3 Restoration of State
So far, both analyzed environments support an immutable past.

For these kinds of environments, the restoration of state is not an is-
sue, as they keep the state intact and only modify the executable parts
of the system. However, systems with a mutable past do have ded-
icated mechanisms to restore the state which bring the application
to the same point in time based on recorded input events. Currently,
the model attributes this replaying of events into the emergence time.
However, the model could also account for this phase separately
as a third phase between the adaptation and the emergence phase.
However, only these systems would require this separate phase as
data flow and immutable past systems do not have this phase. Ad-
ditionally, live programming systems with level 3 liveness also do
by definition not require this phase and would also not yield useful
results. Thus, we currently favor the two phase model in combi-
nation with the qualitative distinction between di↵erent kinds of
experiences of live programming.

6

7. RELATED WORK
One work describes a formal model of live programming con-

cerned with the validity of bidirectional edits between code defining
a user interface and the rendered version [5]. Further, they describe
a formal model for what we described as immutable past systems.
However, they conducted no dedicated analysis of the response time
of the proposed system. Based on this work another work also clas-
sifies live programming systems from a technical perspective into
two categories. One class applies changes in real-time and does
not change state from past executions and the other class records
events and replays the complete execution on changes [19]. These
categories correspond to our proposed categories of mutable past
and immutable past systems.

Other work focused specifically on implementation strategies for
level 4 liveness in declarative visual programming environments [6].
It also contains a theoretical analysis of the asymptotic complexity
of the strategies and an empirical study of their runtimes for given
examples. The empirical study also di↵erentiates between di↵erent
factors. However, the underlying model is designed for level 4 live-
ness visual programming environments, while our model is designed
to allow for a variety of live programming environments.

General human-computer interaction studies also address the is-
sue of quantitative thresholds for system response times. We have
based our model on a general model for system response times [21].
This model was devised by surveying existing studies on the im-
pact of the system response time on the productivity and well-being
of software users. Another human-computer interaction guideline
for the optimal system response time was derived from psycholog-
ical cognitive studies on the processing capabilites of the human
mind [15]. Two remarkable thresholds are the 100 ms threshold
for preserving an impression of causality and the 1 s threshold af-
ter which users might wonder whether their command was actually
accepted. Both guidelines could also be used by live programming
system designers in decisions a↵ecting the system response time.

8. CONCLUSION AND FUTURE WORK
Live programming has spread to various domains and there are

qualitative definitions describing the experience of live program-
ming. However, live programming environment designers have no
guidance yet regarding the overall system response time they should
strive for. We proposed a model of the system response time of live
programming environments distinguishing between the adaptation
of the executable form of a system and the emergence of observable
changes in the behavior of the system. We described the design of a
response time study of general-purpose live programming environ-
ments based on this model and gathered first results in a pilot study
with Squeak/Smalltalk and Self. The observed median adaptation
phase duration of under 50 ms hints, that a short adaptation phase
might be common to live programming environments. Results from
a broader study might result in a guideline for live programming sys-
tem designer to judge whether their system is already "live" enough
with regard to its response time.

8.1 Future Work
The pilot study hinted some conclusions regarding the character-

istics of live programming environments. To gather more insights
and strengthen the conclusions, we will conduct the planned study
on the response times of general-purpose live programming environ-
ments. So far, the pilot study did not yield results for the emergence
time. However, we hope to gather data on the emergence phase by
defining a set of challenges with well-defined required observations.

To validate that the results of the model can characterize live pro-
gramming benchmarks, it would be beneficial to apply the model

to environments which are traditionally not seen as live program-
ming environments. To gather measurements for the adaptation, as
well as for the emergence phase, the environment would still need
to supply some form of feedback. In order to illustrate how such
systems might achieve level 3 liveness, an analysis of systems with
automatic test execution might be of interest.

Another interesting dimension for an analysis of live program-
ming environments would be implementation strategies, such as
incremental compilation, check points, or dynamic method dispatch.
If the impact of these on the adaptation and emergence phase could
be determined, live programming system developers could chose
appropriate strategies for their system at hand.

Live programming systems are always a combination of technical
architecture, application domain and a particular task at hand. They
implement liveness on several levels and provide di↵erent experi-
ences of liveness (see section 2). A taxonomy of all kinds of live
programming systems including domain-specific environments in
combination with a quantitative evaluation as proposed in this paper,
might result in a general overview of the variety of live program-
ming systems. The combination of measured adaptation phases and
implemented feedback mechanisms might also give insights in the
required maximum adaptation phase durations for specific kinds of
feedback.

Acknowledgments
We would like to thank all participants of the PX/16 writers work-
shop for their valuable feedback and criticism bringing forward the
discussion on the characteristics of live programming systems. We
also gratefully acknowledge the financial support of the Research
School of the Hasso Plattner Institute and the Hasso Plattner Design
Thinking Research Program.

9. REFERENCES
[1] CLisp GNU Man Page. Online at

http://www.clisp.org/impnotes/clisp.html (accessed 14th of
June 2016).

[2] Elm’s Time Traveling Debugger. Online at
http://debug.elm-lang.org/ (accessed 14th of June 2016).

[3] SLIME Project Page. Online at
https://common-lisp.net/project/slime/#platform (accessed
14th of June 2016).

[4] Squeak Webpage. Online at http://www.squeak.org/ (accessed
14th of June 2016).

[5] S. Burckhardt, M. Fähndrich, P. de Halleux, S. McDirmid,
M. Moskal, N. Tillmann, and J. Kato. It’s alive! continuous
feedback in UI programming. In Proceedings of Programming
Language Design and Implementation (PLDI) 2013, pages
95–104, New York, NY, USA, 2013. ACM.

[6] M. M. Burnett, J. W. A. Jr., and Z. T. Welch. Implementing
level 4 liveness in declarative visual programming languages.
In Proceedings of the Symposium on Visual Languages 1998,
pages 126–133, New York, NY, USA, 1998.

[7] Cycling74. The Max Language Documentation. Online at
https://cycling74.com (accessed 14th of June 2016).

[8] E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for GUIs. In Proceedings of Programming
Language Design and Implementation (PLDI) 2013, pages
411–422, New York, NY, USA, 2013. ACM.

[9] B. Freudenberg, Y. Ohshima, and S. Wallace. Etoys for one
laptop per child. In Creating, Connecting and Collaborating
through Computing (C5) 2009, pages 57–64. IEEE, 2009.

[10] R. P. Gabriel. personal communication, 2016.

7

[11] Google Inc. Chrome DevTools Documentation. Online at
https://developer.chrome.com/devtools (accessed 14th of June
2016).

[12] C. M. Hancock. Real-Time Programming and the Big Ideas of
Computational Literacy. PhD thesis, Massachusetts Institute
of Technology, Sept. 2003.

[13] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical Smalltalk
written in itself. In ACM SIGPLAN Notices, volume 32, pages
318–326. ACM, 1997.

[14] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and
T. Mikkonen. The Lively Kernel: A self-supporting system on
a web page. In Proceedings of the Workshop on
Self-Sustaining Systems (S3) 2008, pages 31–50. Springer,
2008.

[15] J. Johnson. Designing with the Mind in Mind. Morgan
Kaufmann, San Francisco, CA, USA, 2nd edition, 2014.

[16] H. Lieberman and C. Fry. Bridging the gulf between code and
behavior in programming. In Proceedings of the conference
on Human factors in computing systems (CHI) 1995, pages
480–486, New York, New York, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

[17] J. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press,
1965.

[18] S. McDirmid. A Live Programming Experience. Online at
http://www.thestrangeloop.com/2015/
a-live-programming-experience.htmls (accessed 14th of June
2016).

[19] S. McDirmid. Usable live programming. In Proceedings of the
Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward!) 2013, pages 53–62, New
York, NY, USA, 2013. ACM.

[20] D. A. Norman and S. W. Draper. User Centered System
Design. Lawrence Erlbaum Associates, Inc., Publishers, 1986.

[21] B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs.
Designing the User Interface: Strategies for E↵ective
Human-Computer Interaction. Pearson, Upper Saddle River,
New Jersey, USA, international edition of 5th revised edition,
2009.

[22] M. Taeumel, M. Perscheid, B. Steinert, J. Lincke, and
R. Hirschfeld. Interleaving of modification and use in
data-driven tool development. In Proceedings of Onward!
2014, pages 185–200. ACM, 2014.

[23] S. L. Tanimoto. VIVA: A visual language for image
processing. Journal of Visual Language Computation,
1(2):127–139, 1990.

[24] S. L. Tanimoto. A perspective on the evolution of live
programming. In Proceedings of Workshop on Live
Programming (LIVE) 2013, pages 31–34. IEEE, 2013.

[25] D. Ungar, H. Lieberman, and C. Fry. Debugging and the
experience of immediacy. CACM, 40(4):38–43, 1997.

[26] D. Ungar and R. B. Smith. Self: The power of simplicity. In
Proceedings of Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA) 1987, pages 227–242,
New York, New York, USA, 1987. ACM.

8

	Contents
	How Live are Live Programming Systems? Benchmarking the Response Times of Live Programming Environments (Patrick Rein, Stefan Lehmann, Toni Mattis, Robert Hirschfeld)
	Patrick Rein, Stefan Lehmann, Toni Mattis, Robert Hirschfeld

	Satisfaction, Time Investment, and Success in Students' Programming Exercise (Amir Kirsh and Iris Gaber)
	Amir Kirsh and Iris Gaber

	Towards Making a Computer Tutor for Children of All Ages (A Memo) (Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg, Aran Lunzer, and Alan Kay)
	Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg, Aran Lunzer, and Alan Kay

	Towards Gaze Control in Programming Environments (Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld)
	Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld

	Exemplifying Moldable Development (Andrei Chis, Tudor Girba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel)
	Andrei Chis, Tudor Girba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel

	Evolving User Interfaces From Within Self-supporting Programming Environments: Exploring the Project Concept of Squeak/Smalltalk to Bootstrap UIs (Marcel Taeumel and Robert Hirschfeld)
	Marcel Taeumel and Robert Hirschfeld

